## TRANSMISSION NETWORK EXPANSION PLANNING UNDER DELIBERATE OUTAGES

Authors:Natalia Alguacil, José Manuel Arroyo,<br/>Miguel CarriónInstitution:University of Castilla – La Mancha, Spain<br/>email:Natalia.Alguacil@uclm.es

#### Outline

- □ Introduction
- □ Scenario generation procedure
- □ Formulation
- □ Case studies
- Conclusions & Further Research





Why is the transmission network a potential target for destructive agents?

- Critical infrastructure for the society welfare
- It spreads over wide geographical areas
- Remotely operated
- Cascading effects of outages
- Operated close to static and dynamic limits ⇒ higher level of vulnerability





What can be done to mitigate the vulnerability?:

- Reinforcement of the network ⇒ Preventive actions
- Adequate and fast restoration of power supply after an attack ⇒ Corrective actions



Classical transmission expansion planning

- Optimal timing, location and sizing of transmission facilities
- 1-year planning horizon  $\Rightarrow$  static
- Only economic issues (centralized/competitive frameworks)



Transmission network expansion planning under deliberate outages

- Nonrandom uncertain events ⇒ no statistics can be derived from historical data
- Uncertainty must be addressed ⇒ scenarios
- Perceived likelihood of scenarios  $\Rightarrow$  weights,  $\pi(\omega)$



#### TRANSMISSION NETWORK EXPANSION PLANNING UNDER DELIBERATE OUTAGES

#### **Scenario generation procedure**

Uncertainty on destructive agent behaviour:

- Set of scenarios  $\Omega$  characterizes the uncertainty
- Each scenario ω represents a credible attack plan resulting in a particular level of damage
- Level of damage measured in terms of the total load shed



Attack plans are selected as scenarios depending on the level of damage caused

□ Iterative procedure based on the solution of the so-called terrorist threat problem















Scenario weight assignment represents the tradeoff between:

the level of damage

the required effort to achieve it (number of destroyed lines)

$$\pi(\omega) = \frac{\frac{\text{load shed}(\omega)}{\text{#destroyed lines}(\omega)}}{\sum_{\omega'=1}^{n_{\Omega}} \frac{\text{load shed}(\omega')}{\text{#destroyed lines}(\omega')}} ; \omega = 1, ..., n_{\Omega}$$



#### TRANSMISSION NETWORK EXPANSION PLANNING UNDER DELIBERATE OUTAGES

# Formulation of the risk-neutral model

Decision variables common to all scenarios:

Construction of prospective lines

Decision variables for each scenario,  $\omega$ :

- Load shed
- Voltage angles
- Power generation dispatch





Minimize

weight( $\omega$ )[level-of-damage]+ $\beta$ [investment-costs]

$$\sum_{\omega = 1}^{n_{\Omega}} \pi(\omega) \left[ \sum_{n \in \mathbb{N}} \Delta P_{n}^{D}(\omega) \right] + \beta \sum_{\ell \in L^{C}} C_{\ell}^{L} s_{\ell}$$

β: tradeoff between vulnerability and economic issues



#### Subject to:

- $\label{eq:maximum budget} \square \quad \mbox{Maximum budget} \qquad \sum_{\ell \in L^C} C^L_\ell s_\ell \leq C^L_T$
- Power balance

$$\sum_{g \in G_n} P_g^G(\omega) - \sum_{\ell \mid O(\ell) = n} P_\ell^L(\omega) + \sum_{\ell \mid R(\ell) = n} P_\ell^L(\omega) = P_n^D - \Delta P_n^D(\omega); \quad \omega = 0, \dots, n_{\Omega}, \forall n \in \mathbb{N}$$

□ Line flows (original)

$$\mathbf{P}_{\ell}^{\mathrm{L}}(\boldsymbol{\omega}) = \frac{1}{\mathbf{x}_{\ell}} \left[ \delta_{\mathrm{O}(\ell)}(\boldsymbol{\omega}) - \delta_{\mathrm{R}(\ell)}(\boldsymbol{\omega}) \right] \mathbf{v}_{\ell}(\boldsymbol{\omega}); \boldsymbol{\omega} = 0, \dots, n_{\Omega}, \forall \ell \in \mathrm{L}^{\mathrm{O}}$$



#### Subject to:

- $\Box \quad \text{Line flows (candidates), <u>non-linearity</u>} \\ P_{\ell}^{L}(\omega) = \frac{1}{x_{\ell}} \left[ \delta_{O(\ell)}(\omega) \delta_{R(\ell)}(\omega) \right] s_{\ell}; \omega = 0, \dots, n_{\Omega}, \forall \ell \in L^{C}$
- □ Line flow limits

$$- \overline{P}_{\!\ell}^{\rm L} \leq P_{\!\ell}^{\rm L} \big( \omega \big) \leq \overline{P}_{\!\ell}^{\rm L}; \quad \omega \!=\! 0, \ldots, n_{\Omega}, \forall \ell \!\in \! \left\{ \! L^{\rm O} \cup L^{\rm C} \right\}$$

Generator limits

$$0 \le P_g^G(\omega) \le \overline{P}_g^G; \quad \omega = 0, \dots, n_{\Omega}, \forall g \in G$$



#### Subject to:

Nodal phase angle limits

$$\underline{\delta} \leq \delta_{n}(\omega) \leq \overline{\delta}; \quad \omega = 0, \dots, n_{\Omega}, \forall n \in N$$

Load shed limits

$$\Delta P_n^D(\omega) = 0; \quad \omega = 0, \forall n \in N$$

$$0 \leq \Delta P_{n}^{\mathrm{D}}(\omega) \leq P_{n}^{\mathrm{D}}; \quad \omega = 1, \dots, n_{\Omega}, \forall n \in N$$

Binary variables

$$\mathbf{s}_{\ell} \in \{0,1\}; \quad \forall \ell \in \mathbf{L}^{\mathrm{C}}$$



#### MINLP formulation:

Power flows through candidate lines (per scenario) <u>non-linearity</u>

$$\mathbf{P}_{\ell}^{\mathrm{L}}(\boldsymbol{\omega}) = \frac{1}{\mathbf{x}_{\ell}} \left[ \delta_{\mathrm{O}(\ell)}(\boldsymbol{\omega}) - \delta_{\mathrm{R}(\ell)}(\boldsymbol{\omega}) \right] \mathbf{s}_{\ell}; \boldsymbol{\omega} = 0, \dots, n_{\Omega}, \forall \ell \in \mathrm{L}^{\mathrm{C}}$$

## Equivalent MILP formulation!!



Advantages of the proposed formulation:

- Development of solutions based on mathematical programming ⇒ Efficient and sound approaches
- Straightforward modification of network planner preferences



#### TRANSMISSION NETWORK EXPANSION PLANNING UNDER DELIBERATE OUTAGES

# Case studies for the risk neutral approach





|   |                         | $\Delta D(\omega)$ |               |
|---|-------------------------|--------------------|---------------|
| ω | <b>Destroyed Lines</b>  | (MW)               | $\pi(\omega)$ |
| 1 | 2-3                     | 470                | 0.3474        |
| 2 | 3-5                     | 470                | 0.3474        |
| 3 | 2-3, 3-5                | 570                | 0.2106        |
| 4 | 1-2, 1-4, 1-5, 2-3, 3-5 | 640                | 0.0946        |



- Maximum: 115.1 MW (3 lines built, traditional)
- Minimum: 0 MW (8+ lines built, traditional)











#### **Risk neutral model**



#### **Risk neutral model**



## **Risk neutral model** Economic issues ( $\beta$ =0.05): Node 5 Node 1 Node 3 Node 2 Node 6 Node 4 July, 2009

#### TRANSMISSION NETWORK EXPANSION PLANNING UNDER DELIBERATE OUTAGES

#### Formulation of the risk-averse model

Probabilistic choice vs risk analysis

Probabilistic choice:

$$\operatorname{Min}_{j}\sum_{\omega}\pi(\omega)\Delta D^{j}(\omega)$$

Risk analysis:

$$\operatorname{Min}_{j}\sum_{\omega}\pi(\omega)R_{j}(\omega)$$

where:  $R_{j}(\omega) = \Delta D^{j}(\omega) - \Delta D^{\min}(\omega)$ 



Probabilistic choice vs risk analysis

$$\begin{split} & \underset{j}{\operatorname{Min}} \sum_{\omega} \pi(\omega) \Big[ \Delta D^{j}(\omega) - \Delta D^{\min}(\omega) \Big] \\ & \underset{j}{\operatorname{Min}} \sum_{\omega} \Big[ \pi(\omega) \Delta D^{j}(\omega) - \pi(\omega) \Delta D^{\min}(\omega) \Big] \\ & \underset{j}{\operatorname{Min}} \sum_{\omega} \pi(\omega) \Delta D^{j}(\omega) \end{split}$$



**Risk analysis** 

Regret of expansion plan j and scenario  $\omega$  is formulated as:  $R_{j}(\omega) = \Delta D^{j}(\omega) - \Delta D^{\min}(\omega) ; \quad \forall j \in J, \omega = 0, \dots, n_{\Omega}$ 

where: 
$$\Delta D^{\min}(\omega) = M_{j \in J} \left\{ \Delta D^{j}(\omega) \right\}$$
;  $\omega = 0, ..., n_{\Omega}$ 

• Weighted regret of expansion plan j and attack plan  $\omega$  is:

$$WR_{j}(\omega) = \pi(\omega)R_{j}(\omega); \forall j \in J, \omega = 1, ..., n_{\Omega}$$



Risk analysis

Maximum weighted regret of expansion plan j is:

$$WR_{j}^{\max} = \max_{\omega = 0,...,n_{\Omega}} \{WR_{j}(\omega)\} ; \forall j \in J$$

Minimax weighted regret criterion is formulated as:

$$WR^* = Min_{j \in J} \left\{ WR_j^{max} \right\}$$



Decision variables common to all scenarios:

Maximum weighted regret, WR<sup>max</sup>
 Construction of prospective lines

Decision variables for each scenario,  $\omega$ :

- Weighted regret, WR(ω)
- Load shed
- Voltage angles
- Power generation dispatch





Minimize

## $WR^{\max} + \beta$ [investment costs]

β: tradeoff between vulnerability and economic issues



#### Subject to:

- □ Weighted regrets associated with each attack plan  $WR(\omega) = \pi(\omega) \left[ \sum_{n \in N} \Delta D(\omega) - \Delta D^{\min}(\omega) \right]; \quad \omega = 1, ..., n_{\Omega}$
- Condition on the maximum weighted regret

$$WR^{\max} \ge WR(\omega)$$
;  $\omega = 1, ..., n_{\Omega}$ 



Subject to:

- Maximum budget
- $\Box$  Nodal power balance ( $\omega$ )
- $\square$  Power flows through existing and candidate lines ( $\omega$ )
- □ Limits on decision variables

#### Equivalent MILP formulation!



# Deterministic transmission expansion problem for scenario $\boldsymbol{\omega}$

$$\Delta D^{\min}(\omega) = Minimize \sum_{n \in N} \Delta D_n(\omega)$$



Subject to:

- Maximum budget
- $\Box$  Nodal power balance ( $\omega$ )
- $\square$  Power flows through existing and candidate lines ( $\omega$ )
- □ Limits on decision variables

#### Equivalent MILP formulation!



#### TRANSMISSION NETWORK EXPANSION PLANNING UNDER DELIBERATE OUTAGES

**Case studies** 





|   |                         | $\Delta D(\omega)$ | $\pi(\omega)$ | $\Delta D^{\min}(\omega)$ |
|---|-------------------------|--------------------|---------------|---------------------------|
| ω | <b>Destroyed Lines</b>  | (MW)               |               | (MW)                      |
| 1 | 2-3                     | 470                | 0.3474        | 205.7                     |
| 2 | 3-5                     | 470                | 0.3474        | 226.1                     |
| 3 | 2-3, 3-5                | 570                | 0.2106        | 270.0                     |
| 4 | 1-2, 1-4, 1-5, 2-3, 3-5 | 640                | 0.0946        | 370.6                     |





|                           |                       |       |              | -     |       |       |
|---------------------------|-----------------------|-------|--------------|-------|-------|-------|
|                           | <b>Expansion Plan</b> | ω=1   | ω = <b>2</b> | ω = 3 | ω = 4 | WD    |
|                           | 1 (-)                 | 470.0 | 470.0        | 570.0 | 640.0 | 507.2 |
|                           | 2 (4-6)               | 370.0 | 370.0        | 470.0 | 540.0 | 407.2 |
|                           | 3 (3-4)               | 388.0 | 392.7        | 488.0 | 558.0 | 426.8 |
|                           | 4 (3-4, 4-6)          | 288.0 | 323.7        | 388.0 | 458.0 | 337.5 |
| <b>Risk-neutral model</b> | 5 (2-6)               | 370.0 | 370.0        | 470.0 | 540.0 | 407.2 |
|                           | 6 (2-6, 4-6)          | 270.0 | 270.0        | 370.0 | 440.0 | 307.2 |
| Load shed (MW)            | 7 (2-6, 3-4)          | 288.0 | 291.0        | 388.0 | 458.0 | 326.2 |
| \$150 budget              | 8 (2-6, 3-4, 4-6)     | 220.1 | 236.1        | 292.9 | 370.6 | 255.2 |
| · 5                       | 9 (1-3)               | 397.6 | 403.7        | 470.0 | 640.0 | 437.9 |
|                           | 10 (1-3, 4-6)         | 303.1 | 316.8        | 370.0 | 540.0 | 344.4 |
|                           | 11 (1-3, 3-4)         | 328.4 | 340.5        | 388.0 | 558.0 | 366.9 |
|                           | 12 (1-3, 3-4, 4-6)    | 240.8 | 283.4        | 288.0 | 458.0 | 286.1 |
|                           | 13 (1-3, 2-6)         | 297.6 | 300.3        | 370.0 | 540.0 | 336.7 |
|                           | 14 (1-3, 2-6, 4-6)    | 205.7 | 226.1        | 270.0 | 440.0 | 248.5 |
| *                         | 15 (1-3, 2-6, 3-4)    | 228.4 | 240.5        | 288.0 | 458.0 | 266.9 |
|                           | 16 (1-3,2-6,3-4,4-6)  | -     | -            | -     | -     | -     |



#### **Risk-averse model**

Weighted regret (MW) \$150 expansion budget

| ω =1 | <b>ω</b> = <b>2</b>                                                                                                                                             | ω = 3                                                                                                                        | ω = 4                                                                                                                                                                                     | <b>WR</b> <sup>max</sup>                                                                                                                                                                                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 91.8 | 84.7                                                                                                                                                            | 63.2                                                                                                                         | 25.5                                                                                                                                                                                      | 91.8                                                                                                                                                                                                                                                                                |
| 57.1 | 50.0                                                                                                                                                            | 42.1                                                                                                                         | 16.0                                                                                                                                                                                      | 57.1                                                                                                                                                                                                                                                                                |
| 63.3 | 57.9                                                                                                                                                            | 46.0                                                                                                                         | 17.7                                                                                                                                                                                      | 63.3                                                                                                                                                                                                                                                                                |
| 28.6 | 33.9                                                                                                                                                            | 24.9                                                                                                                         | 8.3                                                                                                                                                                                       | 33.9                                                                                                                                                                                                                                                                                |
| 57.1 | 50.0                                                                                                                                                            | 42.1                                                                                                                         | 16.0                                                                                                                                                                                      | 57.1                                                                                                                                                                                                                                                                                |
| 22.4 | 15.2                                                                                                                                                            | 21.1                                                                                                                         | 6.6                                                                                                                                                                                       | 22.4                                                                                                                                                                                                                                                                                |
| 28.6 | 22.6                                                                                                                                                            | 24.9                                                                                                                         | 8.3                                                                                                                                                                                       | 28.6                                                                                                                                                                                                                                                                                |
| 5.0  | 3.5                                                                                                                                                             | 4.8                                                                                                                          | 0.0                                                                                                                                                                                       | 5.0                                                                                                                                                                                                                                                                                 |
| 66.7 | 61.7                                                                                                                                                            | 42.1                                                                                                                         | 25.5                                                                                                                                                                                      | 66.7                                                                                                                                                                                                                                                                                |
| 33.9 | 31.5                                                                                                                                                            | 21.1                                                                                                                         | 16.0                                                                                                                                                                                      | 33.9                                                                                                                                                                                                                                                                                |
| 42.6 | 39.7                                                                                                                                                            | 24.9                                                                                                                         | 17.7                                                                                                                                                                                      | 42.6                                                                                                                                                                                                                                                                                |
| 12.2 | 19.9                                                                                                                                                            | 3.8                                                                                                                          | 8.3                                                                                                                                                                                       | 19.9                                                                                                                                                                                                                                                                                |
| 31.9 | 25.8                                                                                                                                                            | 21.1                                                                                                                         | 16.0                                                                                                                                                                                      | 31.9                                                                                                                                                                                                                                                                                |
| 0.0  | 0.0                                                                                                                                                             | 0.0                                                                                                                          | 6.6                                                                                                                                                                                       | 6.6                                                                                                                                                                                                                                                                                 |
| 7.9  | 5.0                                                                                                                                                             | 3.8                                                                                                                          | 8.3                                                                                                                                                                                       | 8.3                                                                                                                                                                                                                                                                                 |
| -    | -                                                                                                                                                               | -                                                                                                                            | -                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                   |
|      | <pre>     w =1     91.8     57.1     63.3     28.6     57.1     22.4     28.6     5.0     66.7     33.9     42.6     12.2     31.9     0.0     7.9     - </pre> | ω = 1ω = 291.884.757.150.063.357.928.633.957.150.022.415.228.622.65.03.566.761.733.931.542.639.712.219.931.925.80.00.07.95.0 | ω = 1ω = 2ω = 391.884.763.257.150.042.163.357.946.028.633.924.957.150.042.122.415.221.128.622.624.95.03.54.866.761.742.133.931.521.142.639.724.912.219.93.831.925.821.10.00.00.07.95.03.8 | $\omega = 1$ $\omega = 2$ $\omega = 3$ $\omega = 4$ 91.884.763.225.557.150.042.116.063.357.946.017.728.633.924.98.357.150.042.116.022.415.221.16.628.622.624.98.35.03.54.80.066.761.742.125.533.931.521.116.042.639.724.917.712.219.93.88.331.925.821.116.00.00.00.06.67.95.03.88.3 |





|                                              | Risk-neutral | Risk-averse | % Reduction |
|----------------------------------------------|--------------|-------------|-------------|
| Risk<br>[MW]                                 | 6.6          | 5.0         | 24.2        |
| Weighted average<br>system load shed<br>[MW] | 248.5        | 255.2       | -2.7        |
| Investment cost<br>[\$]                      | 98           | 119         | -17.6       |
| Expansion plan                               | 14           | 8           | -           |



#### TRANSMISSION NETWORK EXPANSION PLANNING UNDER DELIBERATE OUTAGES

#### **Conclusions & Further Research**

#### Conclusions

Main contributions:

- Generation of a set of plausible scenarios based on a vulnerability analysis
- Risk-neutral model: expansion plan is optimal "on the weighted average" for all scenarios
- Risk-based model: the optimal expansion plan is the one that minimizes the maximum weighted regret for all scenarios





#### Conclusions

Main contributions:

- Risk aversion is modeled by the minimax weighted regret criterion
- Risk paradigm is an appropriate framework to model the impact of intentional outages
- Mixed-integer linear formulation
- Tool for the network planner to model the trade off between vulnerability and investment issues





#### Further Research

- More complex power flow models (AC vs. DC)
- Inclusion of unit decommitment and line switching
- Single-period (power disrupted) vs. multi-period (energy disrupted)
- Weight stability





#### GSEE: http://www.uclm.es/area/gsee