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SUMMARY
In this paper, two nonlinear H∞ control techniques are
used to solve the position control problem of underactuated
cooperative manipulators. The first technique consists in
representing the nonlinear system in a quasi-linear parameter
varying form and the solution is given in terms of
linear matrix inequalities. The second technique gives an
explicit solution to the cooperative manipulators H∞ control
problem. The control of the squeeze force between the
manipulator end-effectors and the object is also evaluated.
Results obtained from an actual cooperative manipulator,
which is able to work as a fully actuated and an underactuated
manipulator, are presented.

KEYWORDS: Nonlinear H∞ control; Underactuated
cooperative manipulators.

1. Introduction
Robotic systems composed of two or more manipulators
transporting an object are denominated cooperative
manipulators. This coupling among manipulators requires
special attention, in position control problems, to the forces
applied to the object. In ref. 1 a control paradigm for
cooperative manipulators is proposed where the position
and force controls are designed independently. The force
is decomposed into motion force (generated by the system
movement) and squeeze force. It is shown that only the
squeeze force must be controlled, since the motion force
goes to zero if the position control is stable.

On the other hand, cooperative manipulators as well
as individual manipulators are subject to parametric
uncertainties and external disturbances. Robust control
approaches have been proposed in the literature for this kind
of system to suppress undesired effects of these phenomena.
In ref. 2 a semidecentralized adaptive fuzzy controller
with H∞ performance is developed for fully actuated
cooperative manipulators, and simulated results illustrate the
performance of this approach. The dynamic equation used in
this reference is derived from the order reduction procedure
proposed in ref. 3 for constraint manipulators.

* Corresponding author. E-mail: terra@sel.eesc.usp.br

This paper deals with the experimental validation of robust
controllers for underactuated cooperative manipulators. One
can define the underactuation in two possible ways: when it is
caused by failures in the actuators, or when the manipulator is
specifically designed taking into account the underactuation
as a structural concept. The main question to be answered
in this paper is related to the advantage of building
underactuated cooperative manipulators. In this case, one
can obtain structures that are lighter or less bulky. However,
it is clear, mainly for this kind of robotic system, that the
robustness against uncertainties and external disturbances
naturally decreases if an appropriate robust control strategy
is not applied. In order to avoid this problem, this paper
shows the advantage of applying control strategies based on
H∞ approaches, taking into account an appropriate model
for underactuated cooperative manipulators. It is important to
observe that for this kind of robust control, the control inputs
are minimized; consequently, the underactuated cooperative
manipulator rejects disturbances with a minimum torque.
Two nonlinear H∞ control techniques based on centralized
control strategies are evaluated in this paper: the H∞ control
for linear parameter varying (LPV) systems4 and the H∞
control based on game theory,5 initially developed in the
literature to control independent robotic arms. The details
of these controllers, applied to the individual underactuated
manipulator UArm II, can be seen in ref. 6. Here, the
underactuated cooperative manipulator is composed of two
manipulators connected to an object, Fig. 1. The experimental
results obtained with the nonlinearH∞ control techniques are
compared based on three performance indexes that measure
the tracking error of the object, the applied torque, and the
squeeze force.

The robust control strategies proposed in this paper are
also compared with the controller presented in refs. 7 and 8,
where the hybrid position/force controller proposed in ref. 1
is extended to underactuated cooperative manipulators.

This paper is organized as follows: in Section 2, the
dynamic equations for fully actuated and underactuated
cooperative manipulators are presented, considering the
squeeze force control proposed in refs. 1 and 7; in Section 3,
the H∞ control for LPV systems is presented; in Section 4,
the quasi-LPV representation of underactuated cooperative
manipulators is developed; in Section 5, the H∞ control
via game theory proposed in ref. 5 for manipulator robot
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Fig. 1. Cooperative manipulator UArm II.

is presented; and in Section 6, the experimental results are
displayed.

2. Cooperative Manipulators

2.1. Fully actuated cooperative manipulators
Consider a cooperative manipulator consisting of m fully
actuated manipulators, each one with n degrees of freedom.
Let qi ∈ �n be the vector of generalized coordinates of
manipulator i, and xo ∈ �n the vector composed of Cartesian
coordinates and orientation of the object, rigidly connected
to the end-effectors of the manipulators. The geometric
constraints generated by this configuration are given by
ϕi(xo, qi) = 0 for i = 1, 2, . . . , m. We denote Joi

(xo, qi)
and Ji(xo, qi) as the Jacobian matrices of ϕi(xo, qi) with
relation to xo and qi , respectively, i.e., Joi

(xo, qi) = ∂ϕi/∂xo

and Ji(xo, qi) = ∂ϕi/∂qi . Hence, the velocity constraints
are given by ϕ̇i(xo, qi) = Joi

(xo, qi)ẋo + Ji(xo, qi)q̇i = 0 for
i = 1, 2, . . . , m. Assume that the relation

q̇i =−J−1
i (xo, qi)Joi

(xo, qi)ẋo

for i = 1, 2, . . . , m can always be computed. Then, the
kinematic constraints are expressed by

θ̇ =
[

In

−J−1(xo)Jo(xo)

]
ẋo ≡ B(xo)ẋo (1)

where θ = [xT
o qT

1 . . . qT
m]T, J (xo) = diag[J1(xo, q1), . . . ,

Jm(xo, qm)], Jo(xo) = [J T
o1

(xo, q1) · · · J T
om

(xo, qm)]T, and
diag[A, B, . . . , Z] is a block-diagonal matrix composed of
matrices A, B, . . . , Z.

The dynamic equation of the object is given by

Mo(xo)ẍo + Co(xo, ẋo)ẋo + go(xo) = J T
o (xo)h (2)

where Mo(xo) is the inertia matrix, Co(xo, ẋo) is the Coriolis
and centripetal matrix, go(xo) is the gravitational torque
vector, and h = [hT

i · · · hT
m]T with hi ∈�n is the vector of

applied force by the manipulator i in the object.
The dynamic equation of the manipulator i is given by

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi + J T
i (xo, qi)hi (3)

where Mi(qi) is the inertia matrix, Ci(qi, q̇i) is the Coriolis
and centripetal matrix, gi(qi) is the gravitational torque
vector, and τi is the applied torque vector, of manipulator i.
Then, the dynamic equation of the cooperative manipulator
can be represented as

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) =
[

0
τ

]
+

[
J T

o (xo)

J T(xo)

]
h (4)

where M(θ)=diag[Mo(xo), M1(q1), . . . , Mm(qm)], C(θ, θ̇)=
diag[Co(xo, ẋo), C1(q1, q̇1), . . . , Cm(qm, q̇m)], g(θ)=[go(xo)T

g1(q1)T . . . gT
m(qm)]T, and τ = [τT

1 . . . τT
m]T.

Let ho be the projection of h in the frame fixed on
the center of mass of the object, ho = J T

oq(xo)h, with
Joq(xo) = diag[Jo1 (xo, q1), . . . , Jom

(xo, qm)]. The resulting
force in the object hro = J T

o (xo)h can be rewritten as

hro =ATJ T
oq(xo)h = ATho

where AT = [In In · · · In] ∈ �n × (nm) and In is the identity
matrix of size n. Since AT is a nonsquare and a full row-
rank matrix, there exists a nontrivial null space, denoted by
squeeze subspace XS, given by XS ={hoS ∈�nm|AThoS = 0}.
The dimension of XS is n(m − 1). If ho belongs to the null
space XS, the resulting force has no contribution to the object
movement. It is defined the orthogonal decomposition of the
projection of the applied force ho =hoS + hoM, where hoS is
the projection of ho in XS, named squeeze force, and hoM is
the force induced by the system movement, named motion
force. According to ref. 1, the matrix AT is used to avoid unit
inconsistency problems.

Considering the orthogonal decomposition, the dynamic
equation of the cooperative manipulator, Eq. (4) can be
represented as

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = τv + A
T
(xo)hoS (5)

where τv is an auxiliary control input defined as

τv =
[

AThoM

τ + J T(xo)J−T
oq (xo)hoM

]

and A(xo) = [A J−1
oq (xo)J (xo)] is a Jacobian matrix.

If the auxiliary control input is partitioned in two vectors,
τv1 =AThoM and τv2 = τ + J T(xo)J−T

oq (xo)hoM, the applied
torque vector can be computed by

τ = τv2 − J T(xo)J−T
oq (xo)(AT)+τv1 (6)

where (AT)+ =A(ATA)−1 is the pseudoinverse of AT. The
motion force is given by hoM = (AT)+τv1. Hence, the control
problem is to find an auxiliary control in order to guarantee
stability and robustness against disturbances.

Considering the kinematic constraints in Eq. (1) and
premultiplying the dynamic equation of the cooperative
manipulator in Eq. (5) by BT(xo) to eliminate the squeeze
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force term since BT(xo)A
T
(xo) = 0, one obtains

M(xo)ẍo + C(xo, ẋo)ẋo + g(xo) = τ v (7)

where M(xo)=BT(xo)M(xo)B(xo), C(xo, ẋo)=BT(xo)M(xo)
Ḃ(xo) + BT(xo)C(xo, ẋo)B(xo), g(xo) = BT(xo)g(xo), and
τ v =BT(xo)τv .

2.2. Underactuated cooperative manipulators
Consider now that the joints of the cooperative manipulator
are formed by na active joints (with actuators) and np

passive joints (without actuators). The kinematic constraints
in Eq. (1) can be rewritten as

˙̃θ =
[

In

−J−1
AP (xo)Jo(xo)

]
ẋo ≡ B̃(xo)ẋo (8)

where θ̃ = [xT
o qT

a qT
p ]T, qa ∈ �na is the position vector of

active joints, qp ∈�np is the position vector of passive
joints, and JAP(xo) is a Jacobian matrix generated from
an orthogonal permutation matrix PAP.

7 Therefore, if q̃ =
[qT

a qT
p ]T = PAP[qT

1 qT
2 · · · qT

m]T, then JAP(xo) = [Ja(xo)
Jp(xo)] = J (xo)PAP.

The dynamic equation of underactuated cooperative
manipulators can be given by

M̃(θ̃) ¨̃
θ + C̃(θ̃ , ˙̃θ) ˙̃θ + g̃(θ̃) =

⎡⎢⎣ 0

τa

0

⎤⎥⎦ +

⎡⎢⎣J T
o (xo)

J T
a (xo)

J T
p (xo)

⎤⎥⎦ h (9)

where M̃(θ̃ ) = diag[Mo(xo), MAP(q̃)], MAP(q̃) = PAPdiag
[M1(q1), . . . , Mm(qm)]P T

AP, C̃(θ̃ , ˙̃θ) = diag[Co(xo, ẋo), CAP

(q̃, ˙̃q)], CAP(q̃, ˙̃q) = PAPdiag[C1(q1, q̇1), . . . , Cm(qm, q̇m)]
P T

AP, g̃(θ̃) = [go(xo)TgAP(q̃)T]T, and gAP =PAP[gT
1 (q1) · · ·

gT
2 (q2)]T. Note that the torques in the passive joints are zero,

characterizing the underactuation.
Considering the orthogonal decomposition of the projec-

tion of the applied force h = J−T
o (xo)AT(hoS + hoM), Eq. (9)

becomes

M̃(θ̃ ) ¨̃θ + C̃(θ̃ , ˙̃θ) ˙̃θ + g̃(θ̃ ) = τv + ÃT(xo)hoS (10)

where τv is an auxiliary control input defined as

τv =

⎡⎢⎣ AThoM

τa + J T
a (xo)J−T

oq (xo)hoM

J T
p (xo)J−T

oq (xo)hoM

⎤⎥⎦
and Ã(xo) = [A J−1

oq (xo)Ja(xo) J−1
oq (xo)Jp(xo)] is a Jacobian

matrix. If the auxiliary control input is partitioned in three
vectors, τv1 = AT(xo)hoM, τv2 = τa + J T

a (xo) J−T
oq (xo)hoM,

and τv3 = J T
p (xo)J−T

oq (xo)hoM, the applied torque in the active
joints can be computed as

τa=τv2 − J T
a (xo)J−T

oq (xo)

[
AT

J T
p (xo)J−T

oq (xo)

]
+

[
τv1

τv3

]
. (11)

Considering the kinematic constraints in Eq. (8) and
premultiplying Eq. (10) by B̃T(xo) to eliminate the squeeze
force term since B̃T(xo)ÃT(xo) = 0, the dynamic equation of
the underactuated cooperative manipulator is given by

M̃(xo)ẍo + C̃(xo, ẋo)ẋo + g̃(xo) = τ̃v (12)

where M̃ (xo) = B̃ T(xo) M̃ (θ̃) B̃ (xo), C̃(xo, ẋo) = B̃ T(xo)
(M̃(θ̃ ) ˙̃B(xo)+C̃(θ̃ , ˙̃θ)B̃(xo)), g̃(xo) = B̃T(xo)̃g(θ̃ ), and τ̃v=
B̃T(xo)τv .

From the control paradigm introduced in ref. 1 for coopera-
tive manipulators, the position and squeeze force control
problems can be decomposed and solved independently. In
this case, the applied torque can be computed by

τ = τP + τS

where τP are torques generated by the position control and
τS are torques generated by the squeeze force control. In this
paper, τP are given by Eq. (6) for fully actuated manipulators.
For underactuated manipulators, τP =P −1

AP [τT
a 0]T, with τa

given by Eq. (11). In Sections 4 and 5, the dynamic equations
(7) and (12) are used to design robust controllers for position
control of cooperative manipulators, considering parametric
uncertainties and external disturbances in the manipulator
and the object.

2.3. Squeeze force control
For the squeeze force control, ref. 1 proposed the utilization
of an integral controller. For fully actuated manipulators, the
applied torque related to the squeeze force control is given
by

τS =DT(xo)

[
hd

oS + Ki

∫ (
hd

oS − hoS
)

dt

]
(13)

where hd
oS is the desired squeeze force, Ki is a positive

definite matrix, and

D(xo) =⎡⎢⎣ J−1
o1

(xo, �1(xo))J1(xo, �1(xo)) . . . 0
...

. . .
...

0 . . . J−1
ok

(xo, �k(xo))Jk(xo, �k(xo))

⎤⎥⎦.

The dimension of hoS is nm and, since the dimension of
XS is n(m − 1), it is possible to write hoS = ÂTλS, where
λS ∈�n(m−1) and ÂT ∈ �(nm) × (n(m−1)) is the full rank matrix
that projects the null space of AT (Im(ÂT) =XS). Hence,
vector λS represents the variables to be controlled. For the
underactuated cooperative manipulator, (13) can be parti-
tioned as [

τSa

0

]
=

[
DT

a (xo)

DT
p (xo)

]
ÂTλS (14)

where [Da(xo) Dp(xo)] = D(xo)PAP. Note that np constraints
are imposed in the components of λS since it is not possible
to apply torque in the passive joints, τSp = 0. As the
manipulator robots considered here are nonredundant ones,
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not all components of λS can be independently controlled,
(see ref. 7 for more details).

The vector λS is partitioned in the independently controlled
components λSc ∈ �ne , where ne = n(m − 1) − np if na > n,
and ne = 0 if na < n, and in the not controlled components
λSn ∈ �np . Note that if na < n, none of the components of λS

can be controlled. The squeeze force controller is given by

λSc =
[
λd

Sc + KiS

∫ (
λd

Sc − λSc
)

dt

]
(15)

where λd
Sc is the desired value for λSc and KiS is a positive

definite matrix. λSn is computed from the constraints in
Eq. (14) as a function of λSc. The applied torque in the active
joints related to the squeeze force control is given by Eq. (14)
as

τSa =DT
a (xo)ÂTλSc. (16)

3. H∞ Control of LPV Systems
Consider the following LPV system

⎡⎣ ẋ

z1

z2

⎤⎦ =

⎡⎢⎣ A(ρ) B1(ρ) B2(ρ)

C1(ρ) 0 0

C2(ρ) 0 I

⎤⎥⎦
⎡⎣ x

w

u

⎤⎦ (17)

where x is the state vector, u is the control input vector, w is
the external input vector, z1 and z2 are the output variables,
and ρ is the parameter varying vector. The system in Eq. (17)
has L2 gain ≤ γ if∫ T

0
‖z‖2 dt ≤ γ 2

∫ T

0
‖w‖2 dt (18)

for all T ≥ 0 and all w ∈L2(0, T ), with x(0) = 0. Assume
that the underlying parameter ρ varies in the allowable set

Fν
P = {

ρ ∈ C1(�+, �k) : ρ ∈ P, |ρ̇i | ≤ νi

}
for i = 1, . . . , k, where P ⊂ �k is a compact set, and
ν = [ν1 · · · νk]T with νi ≥ 0. The H∞ controller for LPV
systems adopted in this paper is based on state feedback
approach developed in ref. 4: If there exists a continuously
differentiable matrix function X(ρ) > 0 that satisfies⎡⎢⎣ E(ρ) X(ρ)CT

1 (ρ) B1(ρ)

C1(ρ)X(ρ) −I 0

BT
1 (ρ) 0 −γ 2I

⎤⎥⎦ < 0 (19)

where

E(ρ) = −
m∑

i=1

±
(

νi

∂X

∂ρi

)
− B2(ρ)BT

2 (ρ)

+ Â(ρ)X(ρ) + X(ρ)Â(ρ)T

and Â(ρ) = A(ρ) − B2(ρ)C2(ρ), then, the closed loop system
has L2 gain ≤ γ under the state feedback law

u =−(B2(ρ)X−1(ρ) + C2(ρ))x.

Hence, it is required to solve a set of parametric linear
matrix inequalities (LMIs) represented by Eq. (19), which is
an infinite convex optimization problem. A practical scheme
based on basis functions for X(ρ) and on gridding the
parameter set P , also developed in ref. 4, is adopted here
to solve these LMIs.

4. Quasi-LPV Representation of Cooperative
Manipulators
Nonlinear systems can always be represented as LPV
systems.9 However, in this case, the parameter ρ in Eq. (17) is
not only a function of time, but also of system states. This fact
imposes a restrictive characteristic on the controller, since
the compact set P and the parameter variation rate bounds ν,
used in the design procedure, are not exactly known before
the controller implementation. The values for P and ν must
be checked during this phase. Due to this characteristic, this
kind of representation is denominated quasi-linear parameter
varying (quasi-LPV).

In this section, quasi-LPV representations of fully actuated
and underactuated cooperative manipulators is developed,
based on the following dynamic equation

M̂0(xo)ẍo + Ĉ0(xo, ẋo)ẋo + ĝ0(xo) + τ̂d = τ̂v (20)

where M̂0(xo) =M0(xo), Ĉ0(xo, ẋo) =C0(xo, ẋo), ĝ0(xo) =
g0(xo), and τ̂v = τ v if all manipulators are fully actuated
[Eq. (7)]; or M̂0(xo) = M̃0(xo), Ĉ0(xo, ẋo) = C̃0(xo, ẋo),
ĝ0(xo) = g̃0(xo), and τ̂v = τ̃v if any of the manipulators is
underactuated, [Eq. (12)]. The index 0 indicates nominal
values for the matrices and vectors. τ̂d represents the vector
of parametric uncertainties and external disturbances of the
system.

The state tracking error is defined as

x̃ =
[

ẋo − ẋd
o

xo − xd
o

]
=

[
˙̃xo

x̃o

]
(21)

where xd
o and ẋd

o ∈ �n are the desired reference trajectory
and velocity of the object, respectively. The quasi-LPV
representation of cooperative manipulators is found using
Eqs. (20) and (21) as

˙̃x =A(xo, ẋo)̃x + Bu + Bw (22)

with w = M̂−1
0 (xo)̂τd, B = [IT

n 0T]T, and

A(xo, ẋo) =
[−M̂−1

0 (xo)Ĉ0(xo, ẋo) 0
In 0

]
.

From this equation, the variable τ̂v can be represented as

τ̂v = M̂0(xo)
(
ẍd

o + u
) + Ĉ0(xo, ẋo)ẋd

o + ĝ0(xo).
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Although the matrix M̂0(xo) explicitly depends on the object
position xo, one can consider it as a function of the position
error x̃o. The same can be observed for Ĉ0(xo, ẋo). Hence,
Eq. (22) is a quasi-LPV representation of fully actuated and
underactuated cooperative manipulators.

5. Nonlinear H∞ Control via Game Theory
In this section, the game theory is used to solve the H∞
control problem of cooperative manipulators. This solution
is based on the results presented in ref. 5. From Eq. (21),
after the state transformation given by

z̃ =
[

z̃1

z̃2

]
= T0x̃ =

[
T11 T12

0 I

] [ ˙̃xo

x̃o

]
(23)

where T1 = [T11 T12] and T11, T12 ∈ �n × n are constant
matrices to be determined, the dynamic equation of the state
tracking error becomes

˙̃x =AT (̃x, t )̃x + BT (̃x, t)u + BT (̃x, t)w (24)

with w = M̂0(xo)T11M̂
−1
0 (xo)̂τd

AT (̃x, t) = T −1
0

[
−M̂−1

0 (xo)Ĉ0(xo, ẋo) 0

T −1
11 −T −1

11 T12

]
T0

BT (̃x, t) = T −1
0

[
M̂−1

0 (xo)
0

]
.

The relationship between the auxiliary control input τ̂v and
the control input u is given by

τ̂v = M̂0(xo)ẍc
o + Ĉ0(xo, ẋo)ẋo + ĝ0(xo) (25)

with ẍc
o = ẍd

o − T −1
11 T12 ˙̃xo − T −1

11 M̂−1
0 (xo)(Ĉ0(xo, ẋo)BTT0

x̃ − u).
The H∞ controller presented in this section solves the

following minimax control problem5

min
u ∈L2

max
0 
=w ∈L2

∫ ∞
0

(
1
2 x̃ TQx̃ + 1

2uTRu
)

dt∫ ∞
0

(
1
2wTw

)
dt

≤ γ 2 (26)

where Q and R are positive definite symmetric weighting
matrices, γ is a desired disturbance attenuation level,
x̃(0) = 0, and u =F (x̃)x̃. According to the game theory, the
solution of this minimax problem is found if there exist
matrices T0 and K > 0 satisfying the following algebraic
matrix equation[

0 K

K 0

]
− T T

0 B

(
R−1 − 1

γ 2
I

)
BTT0 + Q = 0. (27)

The solution of this equation is given in ref. 5. The control
input is computed as

u =−R−1BTT0x̃. (28)

Table I. Object parameters.

Mass, mo (kg) 0.025
Length, lo (m) 0.092
Center of mass, ao (m) 0.046
Inertia, Io(kg m)3 0.000023

6. Experimental Results
To validate the proposed nonlinear H∞ control solutions,
they are applied to the underactuated cooperative manipulator
of Fig. 1, composed of two planar underactuated mani-
pulators Underactuated Arm II (UArm II). The kinematic
and dynamic parameters of this manipulator can be found in
ref. 6. The object parameters are presented in Table I.

A straight line in the plane XY, with a given orientation,
is defined as a desired trajectory to move the center
of mass of the object from xo(0) = [0.20 m 0.35 m 0◦]T

to xd
o (T ) = [0.25 m 0.40 m 0◦]T, where T = 5.0 s is the

trajectory duration time. The reference trajectory, xd
o (t), is a

fifth-degree polynomial. The following external disturbances
were introduced to verify the robustness of the proposed
controllers

τd1 =

⎡⎢⎢⎣
0.01e− (t−2.5)2

8 sin(4πt)

−0.01e− (t−2.5)2

8 sin(5πt)

−0.01e− (t−2.5)2

8 sin(6πt)

⎤⎥⎥⎦ and

τd2 =

⎡⎢⎢⎣
0.02e− (t−2.5)2

8 sin(4πt)

0.02e− (t−2.5)2

8 sin(5πt)

0.01e− (t−2.5)2

8 sin(6πt)

⎤⎥⎥⎦ .

The gains of the integral controllers for the squeeze force
control are Ki = 0.9I3 and KiS = 0.9I3 for the fully actuated
and underactuated cases, respectively.

6.1. Fully actuated configuration
To apply the algorithm described in Section 3, the
manipulator needs to be represented as in Eq. (17). The
parameter ρ(x̃) chosen is composed of the position and
orientation errors, that is, k = 3 and ρ (̃x ) = x̃o. The following
quasi-LPV system matrices are considered

A(ρ(x)) = A(ρ (̃x ))
B1(ρ(x)) = B

B2(ρ(x)) = B

C1(ρ(x)) = I6

C2(ρ(x)) = 0

where A(ρ (̃x )) and B are obtained from Eq. (22) with
M̂(xo) =M(xo) and Ĉ(xo, ẋo) =C(xo, ẋo).

The compact set P is defined as ρ ∈ [−0.1, 0.1] m ×
[−0.1, 0.1] m × [−9, 9]◦. The parameter variation rate is
bounded by |ρ̇| ≤ [0.06 m/s 0.06 m/s 6◦/s]. The basis
functions for X(ρ) are selected as: f1(ρ (̃x )) = 1, f2(ρ (̃x )) =
x̃oX

, f3(ρ (̃x )) = x̃oY
, and f4(ρ (̃x )) = cos (̃xoφ

), where x̃o =
[̃xoX

x̃oY
x̃oφ

], x̃oX
and x̃oY

are the X and Y coordinate errors
of the object, respectively, and x̃oφ

is the orientation error.
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Fig. 2. Fully actuated configuration, control via quasi-LPV representation.

The parameter space was divided considering three points in
the set P . The best attenuation level found was γ = 1.25.

For the nonlinear H∞ control designed via game
theory, described in Section 5, the attenuation level
found was γ = 4.0. The weighting matrices used were
Q1 = I3, Q2 = 10I3, Q12 = 0, and R = I3. The desired values
for the squeeze force are hd

oS = [0 0 0]T. The experimental
results, Cartesian coordinates, and orientation of the object,
are shown in Figs. 2 and 3.

Three performance indexes are used to compare the
nonlinear H∞ controllers: the norm of the state vector

L2[̃x] =
(

1

(tr )

∫ tr

0
‖x̃(t)‖2

2 dt

) 1
2

where ‖ · ‖2 is the Euclidean norm; the sum of the applied
torque by the ith joint for both manipulators

E[τ ] =
m∑

j=1

(
n∑

i=1

(∫ tr

0
|τji

(t)| dt

))

and the sum of the squeeze force

E[hoS] =
nm∑
i=1

(∫ tr

0
|hoSi

(t)| dt

)
where tr is the spent time for the object to reach the desired

Table II. Performance indexes—fully actuated configuration.

Nonlinear H∞ L2[̃x] E[τ ] (N m s) E[hoS] (N s)

Quasi-LPV 0.01815 0.8318 0.2193
Game theory 0.01158 1.1200 0.3875

Table III. Performance indexes—underactuated configuration.

Nonlinear H∞ L2[̃x] E[τ ] (N m s) E[hoS] (N s)

Quasi-LPV 0.0154 0.9976 0.4477
Game theory 0.0103 1.0609 0.3973

position. The results presented in Tables II and III are the
average of the respective experiments run five times.

Table II shows the values of L2[̃x], E[τ ], and E[hoS]
computed with the results obtained from the implementation
of the nonlinear H∞ controllers, considering the fully
actuated configuration.

Note that the nonlinear H∞ control via game theory
presented the lowest trajectory tracking errorL2[̃x], although
the spent energy E[τ ] and the squeeze force E[hoS] are bigger
with this controller in comparison with the nonlinear H∞
control via quasi-LPV representation.

6.2. Underactuated configuration
In this section, joint 1 of the manipulator 1 (on the left of
Fig. 1) is passive. In this case, only two components of

Fig. 3. Fully actuated configuration, control via game theory.
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Fig. 4. Underactuated configuration, control via quasi-LPV representation.

the squeeze force can be controlled independently
(ne = n(m − 1) − np = 3(2 − 1) − 1 = 2).7 It is defined here
that the component of the squeeze force referring to the
momentum applied to the object will not be controlled.
The desired values for the squeeze force are λd

Sc = [0 0]T.
The parameter ρ (̃x ), the variation rate bounds, and the

basis functions considered to compute X(ρ) are the same
used for the fully actuated case. Also, the quasi-LPV system
matrices are the same, considering M̂(xo) = M̃(xo) and
Ĉ(xo, ẋo) = C̃(xo, ẋo).

The parameter space was divided considering three points
in the set P . The best level of attenuation found was
γ = 1.25. The weighting matrices for the nonlinear H∞

control via game theory were also the same as defined for
the fully actuated case. The level of attenuation adopted was
γ = 4.0.

The experimental results are shown in Figs. 4 and 5,
and the performance indexes in Table III. Note that, in this
case, the nonlinear H∞ controller via game theory presented
the lowest values of trajectory tracking error and of squeeze
force. The best value for the spent energy is given by the
nonlinear H∞ controller via quasi-LPV representation.

Figure 6 presents the squeeze force components when the
squeeze force control is applied (continuous line) and when
it is not applied (dashed line), for the control via quasi-LPV
representation. It can be observed that only two components

Fig. 5. Underactuated configuration, control via game theory.

Fig. 6. Squeeze force control.
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of the squeeze force related to the linear coordinates are
controlled, they are close to the desired values λd

Sc = 0. The
component of the squeeze force related to the momentum is
not controlled in both cases, as aforementioned.

For the case where the squeeze force is not controlled, the
values of L2[̃x] and E[τ ] are close to the values of Table III.
However, the values of E[hoS], given by 1.6319 N s and
0.9250 N s, for the controllers via quasi-LPV representation
and via game theory, respectively, are, in average, three times
bigger than the values of E[hoS] for the case where the
squeeze force is controlled (see Table III).

The same experiment was also implemented using the
hybrid position/force control for underactuated manipulators
proposed in ref. 8. The performance indexes are given
by: L2[̃x] = 0.0128, E[τ ] = 1.7781, and E[hoS] = 0.5741.
It can be observed that, although the value of L2[̃x] is
lower than that obtained with the controller via quasi-
LPV representation, the values of E[τ ] and E[hoS] are
approximately 70% and 40%, respectively, bigger than the
values obtained with the nonlinear H∞ controllers.

7. Conclusion
In this paper, experimental results obtained from the appli-
cation of nonlinear H∞ controls in an actual underactuated
cooperative manipulator, subject to parametric uncer-
tainties and external disturbances, are presented. From the
computed performance indexes, one can observe that the
cooperative system works satisfactorily with one joint not
actuated, almost equivalent to the fully actuated case. The
results shown confirm that underactuation can be a structural
concept to be used by designers, since an appropriate robust
control strategy is adopted.
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